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ASSESSING DISEASE CLASS-SPECIFIC DIAGNOSTIC ABILITY:
A PRACTICAL ADAPTIVE TEST APPROACH

ABSTRACT Medical diagnostic performance (accuracy) appears to be both disease
class-specific (performance against one disease class can not be used to predict
performance against a different class), and, a function of a case presentation's
'typicality' (typical disease class case presentations are more likely to be correctly
diagnosed than atypical presentations). Given this, diagnostic performance could be
said to simply reflect the robustness of the subject's diagnostic concept for a given
disease class. Interestingly, medical educators have demonstrated little interest in
measuring the robustness of disease class-specific diagnostic concepts. The authors
suggest that such measures could play a central role in training programs designed
to assure the development of diagnostic competency.

In this pilot investigation, the authors utilized disease/sign-symptom conditional
probability estimates, Monte Carlo procedures and artificial intelligence (AI) tools to
create test items (case vignettes) representing varying levels of typicality for the
disease class known as myocardial infarction (heart attack). The typicality estimate
assigned to each test item was converted to a Rasch logit scale value representing it's
difficulty level. Selected test items were then imbedded within a paper-based
examination and the performance of PGY1 (first year postgraduate residents-in-
training) determined for each item. The authors then simulated the residents'
performance in the context of a practical adaptive testing (PAT) format. Results of
the actual paper-based and simulated PAT residents are compared and discussed.
The authors will also discuss these two testing formats in terms of their use to
measure the robustness of disease class-specific diagnostic concepts.
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INTRODUCTION

Classification. Classification, the identification of the set of objects to which a given
instance belongs, is one of the most fundamental and useful capabilities of the
human intellect. Following several decades of research, cognitive scientists have
developed two competing theories (exemplar and abstraction) attempting to describe
how humans perform classification tasks.1,2 For the most part, their investigative
methodologies have involved college students, required to perform artificially
contrived classification tasks based upon exposures to instances of classes consisting
of predefined combinations of abstract symbols (bar charts, letters, etc.). Despite a
number of limitations, these investigations have increased our understanding of
how humans form the internalized 'concepts' which enable them to perform
classification tasks.

Differential diagnosis as a classification task. Many similarities exist between these
artificial classification tasks and medical differential diagnosis (DDX). However, the
applicability and utility of classification theories in forwarding DDX research
remained largely unexplored until recently. Over the last decade, a small number of
investigators have utilized medically trained personnel and medical data (real
patient cases, medical literature, disease/feature relationships) to determine if
cognitive sciences-derived classification theories and methodologies can account for
the behaviors of clinicians performing DDX.3,4,5,6,7 By better understanding how
clinicians form and utilize disease class concepts, medical educators could create
more effective training and assessment methodologies.
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To this end, Norman and colleagues,8 utilize medical students, residents-in-training
and medical practitioners, and, stimuli such as slides picturing actual cases of
patients with dermatologic conditions, to study the effects of exemplars upon DDX
performance. Through careful selection and presentation of these slides, they have
successfully mounted arguments explaining how exemplars form the basis of the
disease class concepts which underlie DDX performance.

In studies designed to model abstraction-based DDX performance theories, Papa Find
co-workers,9,10 acquire knowledge in the form of abstractions consisting of
disease/feature frequency (conditional probability) estimates from medical students,
residents and board certified practitioners. These conditional probabilities are then
transformed into a knowledge base sufficient to enable the investigators' artificial
intelligence tools to simulate each subject's DDX performance against test cases.
Their findings demonstrate that expert/novice differences in DDX (accuracy) can be
accounted for solely on the basis of abstraction-derived disease class concepts.11

Disease class concepts and the assessment of DDX competency. There is no doubt
that clinicians remember, and likely use exemplars (specific case instances) to form
disease class concepts for use in DDX. It is also true that clinicians create abstractions
(e.g., disease/feature conditional probability estimates) and likely use.this knowledge
to perform DDX. Nonetheless, it remains to be seen whether researchers can
determine if exemplars or abstractions play the primary role in the formation and
use of disease class concepts during DDX.

The authors suggest that enough is known about the role of disease class concepts in
DDX to investigate whether DDX competency assessments can be produced via
testing procedures designed to measure 'concept' robustness. Disease class concept
robustness estimates would be of great benefit to both physicians-in-training and
educators engaged in the process of developing and assuring DDX competencies. In
this presentation, the authors develop a rationale for diligently pursuing the
development of disease class DDX competency assessment procedures, and, describe
their methodology and findings in a pilot study designed to assess the robustness of
disease class DDX concepts.

RATIONALE

DDX competency: Case or disease class-specific. Before launching recent
investigations into the applicability of classification theories in understanding how
physicians perform DDX, medical education-oriented researchers focused their
attention on a more fundamental question. These efforts attempted to determine
whether 'skill' or 'knowledge' accounted for the development of competency in the
keystone task known as DDX. Identification of either skills or knowledge in
general, or better yet, a specific skill or knowledge base as preeminent in the
development of diagnostic competency would be of critical importance for both
assessment and instruction.



Up through the late 1970's, it was widely assumed that DDX competency was derived
from the development of intellectual skills in general and problem solving skills in
particular. However, in 1978 Elstein et al found that board certified clinicians (who
were presumed to have superior problem solving skills) did not out-perform non-
certified clinicians when challenged with the same battery of test cases. Rather,
subject performance varied from case to case. Elstein therefore determined that DDX
performance was not dependent upon any particular skill (including problem
solving) but rather was dependent upon knowledge based constructs.3 In 1988, Case
et al provided evidence substantiating the knowledge based supposition by
demonstrating for example, that a subject's performance against a case presentation
of myocardial infarction could not be used to predict their performance against a
case presentation representing pneumonia.12

It is critical to note that these findings would eventually be used as evidence
supporting the notion that DDX performance was not only knowledge based but also
'case-specific'. Adoption of the case specificity hypothesis would have important
implications for medical educators. Specifically, educators would resort to the use of
a small number of case vignette test items (with only one item used to represent any
given disease class) and Generalizability theory in an attempt to derive a single,
global assessment of a subject's DDX competency.

The authors suggest however that the 'DDX performance is case-specific'
interpretation is not only a conservative but perhaps an erroneously narrow
interpretation of earlier findings. Rather, the authors suggest that the findings be
more broadly re-interpreted as a evidence that DDX performance is 'disease class-
specific' (i.e., DDX performance against one class of diseases cannot be easily used to
draw inferences regarding potential DDX performance against another disease class).
The authors now offer further arguments in support of a shift towards the
assessment of disease class-specific DDX concepts.

First, patients presents with signs and symptoms due to the presence of an
underlying pathophysiologic process. The clinician's responsibility is to correctly
diagnose the disease class responsible for the signs and symptoms. Secondly, for any
given disease class, the constillation of signs and symptoms with which the patient
presents can be some factorial combination of signs and symptoms. Put another way,
for the vast majority of diseases, there is no defining set of signs and symptoms with
wihc to clinically diagnose the presence of a given disease, and, there an numerous
sets of different combinations of signs and symptoms with which a given disease
class can manifest itself.

If one accepts the argument that DDX performance is disease class-specific, and,
given that the clinician's primary task is to diagnose which class of diseases a patient
suffers from, then competency assessments should focus on the subject's abilities
within any given disease class. Furthermore, given the various signs and symptoms
with which a disease class can present, then competency assessments for a given
disease class should not be allowed to depend upon a 'single' dichotomous



correct/incorrect response to a case vignette test item. Instead, the authors suggest
that assessments of DDX competency be based upon some estimate of the degree to
which a subject can correctly diagnose typical through atypical case representations
of a given disease class. Such estimates could therefore be said to reflect the
'robustness' of the subject's disease class-specific DDX concepts.

The need to represent the natural variation of case presentations within a given
disease class. Consider the disease class known as myocardial infarction. Legitimate
myocardial infarction test cases may be portrayed by any combination of the
following possible (but not exhaustive) signs and symptoms; dull chest pain, pain
mid-chest in location, pain duration > than 30 minutes, radiation of pain to arm,
and/or neck and/or jaw, dyspnea, diaphoresis, nausea, rales and wheezes.

Given the potentially large number of distinctly different myocardial infarction case
portrayals such combinations of signs and symptoms can generate, it seems neither
valid nor plausible to assume that correct performance against one case vignette can
serve as the basis for making any generalization as to how many other different
myocardial infarction case vignettes an examinee would correctly diagnose. Simply
put, the basis for making a reliable assessment of disease class-specific PDX
competencies would need to be predicated upon the use of a number of different
disease class-specific case vignettes. If one accepts this premise, then it would appear
that medical educators would need to create an examination instrument which
makes it possible to produce logistically feasible and reliable assessments of disease
class-specific DDX competencies.

The authors suggest that two distinctly different testing formats could provide
reliable, disease class-specific DDX competency estimates with only one capable of
providing logistically feasible estimates with currently available technologies. The
first format, a traditional paper-based approach could be designed to include a
sufficiently large number of various case vignette presentations representing a
given disease class. The number of test items needed to produce a reliabl
assessment might likely prove to be logistically prohibitive.

The second, a practical adaptive testing format could be used to more efficiently
identify the level of case typicality at which the subject's disease class concepts fail to
provide them with a correct response. Within the context of a practical adaptive
testing format, the use of Rasch logit scale values to represent a case's typicality (and
level of difficulty) could serve as the basis for determining the robustness of the
subject's disease class DDX concept. A critical precursor to the implementation of
practical adaptive testing however, is the need to demonstrate the existence of a
relationship between case typicality and DDX performance, and, the ability to create
case vignettes with sufficiently fine and varying levels of 'typicality'. These two
issues are now addressed.

DDX performance as a function of 'case typicality': The creation and use of case
typkality estimates as the basis for measuring disease class concept robustness.



Common to both exemplar and abstraction classification theories is the notion that
diagnostic performance is a function of a case's 'typicality'. In a recent investigation,
Papa et a113 demonstrated that a case typicality/performance gradient applied in DDX
(i.e., the more atypical the case, the less likely it would be correctly diagnosed, and,
the more typical the case, the more likely it would be correctly diagnosed). These
findings are the results of the authors' ability to use arEficial intelligence-derived
tools (named KBIT) to carefully construct case presentations with precisely varying
levels of typicality.

Given the ability to create case presentations of varying levels of typicality, the
authors hypothesize that the development of DDX competency might be
characterized (and measurable) as the ability to correctly diagnose increasingly
atypical case presentations. If this is true, then by challenging subjects with case
presentations with varying (and known) levels of typicality, it might be possible to
draw inferences regarding the robustness of the subject's disease class-specific DDX
concept (range of typical through atypical case presentations over which the subject's
disease class concept enables correct DDX). It would appear that a practical adaptive
testing tool using a well calibrated Rasch item bank (representing case's ranked in
terms of their typicality) could assess DDX ability directly and disease class-specific
concept robustness indirectly.

Evidence of the feasibility and utility of a practical adaptive testing format for
assessing disease class-specific DDX competencies could lead to important and
pragmatic implications for medical instruction and curricular design. The following
section provides background briefly describing the artificial intelligence-derived
tools and associated methodologies used in constructing a framework for
investigating 'a practical ldaptive testing approach to assessing the robustness of a
subject's disease class DDX concepts.

METHODOLOGY

Investigative tool. A team of researchers at our institution have attempted to
integrate current abstraction theory-derived assumptions into the design of an
artificial intelligence research tool called KBIT (Knowledge Base Inference Tool).
The goal of the KBIT project is to enable investigators to simulate the DDX
performance of clinicians by creating knowledge base structures and decision
making processes theorized as existing in, and utilized by clinicians. Successful
simulations of actual performance should enable the investigators to generate
more precise inferences regarding the structure of the knowledge base and the
inferencing processes underlying DDX performance.

KBIT consists of three components: 1) a knowledge base acquisition module,
2) a knowledge base transformation module, and 3) an inferencing (decision
making) module.14 With the first module, KBIT acquires knowledge from
subjects in the form of conditional probability estimates for a predefined
number of diseases/signs-symptoms in a given problem area. Consistent with



abstraction theories, these conditional probability estimates are believed to
represent 'summarized generalizations' which reflect the subject's knowledge
of the frequency with which a given disease class is associated with various
given signs-symptoms.

These generalizations may be stored in long term memory (derived from
formalized instruction wherein an authority suggests that '95% of patients
with asthma have wheezing'). Generalizations may also be generated on-line
in working memory (i.e., based upon a clinicians personal, case-based
experiences wherein '20% of the patients he/she has seen with pneumonia
have chest pain with deep breathing').

Based in part upon the work of Kellogg,15 KBIT's second module contains a
'normalization' routine which transforms each subject's generalized
estimates into weights representing the strength of each disease/sign-
symptom relationship. (The use of conditional probability estimates
occasionally gives rise to concerns regarding their 'correctness or accuracy'.
The authors respond by noting that this normalization procedure is designed
to diminish such concerns by shifting the basis for subsequent inferences
from a dependence upon absolute estimate correctness to weights which
reflect the subject's generalizations regarding the 'relative nature of the
strength of disease/sign-symptom relationships').

KBIT's third module contains several different inferencing mechanisms. One
mechanism (prototype emulation routine) is designed to transform the
normalized weights into theoretically idealized disease class 'prototypes'
which are used for research measurement purposes to determine the degree
to which a given test case is both similar to an idealized disease class
prototype (lies within the class - also referred to as 'pattern ma tch'10), and
different from each competing, idealized disease class prototype (distance
between classes also referred to as pattern discrimination10) in the problem
area.

These within-class (WC) and between-class (BC) measures can be used by the
authors to achieve three distinct research objectives. First in terms of
simulating a subject's DDX performance, they have been used to confer a
diagnosis upon a given test case. Second, they have also been used to estimate
the degree to which any given combination of case vignette signs/symptoms
represents a typical through atypical disease class case presentation.13 Third,
the authors now suggest that they can be used in the context of a practical
adaptive test to generate inferences regarding the robustness of a subject's
disease class concepts (as will be described in this presentation). (For a more
detailed review of how KBIT creates and utilizes idealized prototypes, within-
class and between-class int isures in arriving at a diagnosis see Papa et al.14).

Study design: Overview. This investigation consisted of four separate phases.



The first phase involved the use of conditional probability estimates derived
from a panel of subjects, to generate via the use of a Monte Carlo procedure, a
large number of potential test cases representing various presentations of the
disease class known as myocardial infarction (MI). The second phase consisted
of the use of KBIT's within-class and between-class measures to generate
estimates of each potential test case's typicality, the calculation of a Rasch logit
scale value for each test item, and finally, the selection of eight MI test case
items for use in this study. The third phase consisted of the administration of
the selected test items to PGY1 residents and the compilation of individual and
group performance against the items. The fourth phase consisted of the
construction of a practical adaptive test (PAT) which simulated the PGY1
residents performance against the eight selected test items.

Research hypotheses. Hypothesis # 1: There is a positive correlation between
typicality/logit case values and PGY1 group performance on a paper-based
examination containing the eight MI test items (i.e., for a given case vignette
test item, the greater it's typicality/logit value, the greater the percentage of
PGY1 subjects who will correctly diagnose the case). Hypothesis # 2: The
simulated PAT will closely mirror the actual performance of PGY1 subjects.

Phase One: Generation of test case pool. All board certified emergency medicine
physicians who were members of the Texas chapter of the American College of
Emergency Physicians (117 members) were requested via a questionnaire to
produce conditional probability estimates for 67 signs-symptoms (previously
published16) as they related to nine common or important diseases known to
cause acute chest pain (myocardial infarction, angina/coronary ischemia,
dissecting thoracic aortic aneurysm, pericarditis, upper gastrointestinal
disorders, pneumonia, pneumothorax, musculoskeletal disorders and
pulmonary embolus). Each subject therefore was asked to submit a total of 603
conditional probability estimates. Following three mailings, thirty-four
members returned their questionnaire.

For each subject, the Monte Carlo procedure then used their estimates to create
100 different test cases representing sign/symptom variations in the disease class
known as myocardial infarction. The rule underlying this procedure was as
follows: if a subject determined that 60% of patients with MI had sign-symptom
'5', then 60% of the MI cases generated were assigned a positive sign-symptom
'5'. Given 34 subjects, a total of 3,400 potential MI test cases were constructed.

Phase Two: Creation of case typicality estimates and case selection. KBIT
subsequently utilized the 603 conditional probability estimates (produced by
each subject) to simulate each subject's DDX performance against all 3,400 MI
test cases. For each simulated subject, their diagnosis, measure of within-class
(WC) and measure of between-class (BC) estimates were recorded for each test
case. Test cases with less than 40% of the KBIT simulated subjects correctly
diagnosed were dropped from further consideration.



Of those remaining cases in the test pool, each test case's 'typicality' (T) was
defined as sum of the logit of each case's WC and BC measure (T = Logit WC +
logit BC). An averaged T estimate for each case was then determined from all
simulated subjects, correctly diagnosing the case. It was assumed that the
averaged T estimates for all items could be arranged along a unidimensional
linear continuum. A plot revealing the range and distribution of cases rank-
ordered in terms of their averaged T was then produced. This plot represented
the MI disease class 'case typicality gradient' (i.e., level of tes- item difficulty).

Eight test cases were selected to represent points along the typicality/logit
gradient. Typicality/logits for the eight cases (from easy to hard) were as follows:
#I, -.735; #2, -.432; #3, -.035; #4, .000; #5, +.075; #6, +.160; #7, +.280; #8, +.327. The
positive case findings associated with the selected test cases were subsequently
transformed into brief case vignettes for which nine diagnoses served as
possible answers (See Table 1 for listing of each case's positive signs and
symptoms). Only one diagnosis counted as a correct answer.

Phase Three: Examination procedures and correlation of typicality/logit values with
PGY1 performance. The selected test items were distributed among the part three
licensure examination administered by the National Board of Osteopathic Medical
Examiners in February, 1994 to 628 postgraduate year one (PGYI) residents-in-
training. The percent of correct subject responses to each MI test item were as
follows: #1, 91%; #2, 57%; #3, 59%; #4, 26%; #5, 58%; #6, 12%; #7, 22%; #8, 6%. PGY1
performance was subsequently correlated with the typicality/logit values.

Phase Four: Simulated practical adaptive testing (PAT). A schema utilizing a test
item starting and stopping procedure similar to one advocated by Wright17 was
employed to simulate the PGYI subjects' performance in the PAT. More specifically,
the simulated PAT began with MI test item number four. The PAT simulation
would next move to item six if the subject's actual performance on the paper-based
examination demonstrated that he/she correctly had diagnosed item four. If the
subject correctly diagnosed item number six, the PAT stepped up to item number
eight. If item number eight was correctly diagnosed then the PAT stopped and the
student was ranked as if eight items were correctly diagnosed. If item number eight
was not correctly diagnosed, then the subject was ranked as if seven items were
correctly diagnosed. This ranking procedure was mirrored in reverse if the subject
incorrectly diagnosed item number 4 and so on. (For Wright's PAT algorithm for
administering a set of items with a Rasch model see appendix.)

Analysis. Hypothesis # 1. Pearson correlation coefficient relating the typicality/logit
value for each of the eight test items and the percentage of PGY1 subjects correctly
diagnosing each of the eight test items was performed. The correlation was 0.83, p <
.01, df=7. Hypothesis # 2. The degree to which the PAT mirrored the actual
performance rankings of PGY1 subjects can be seen in Figure # 1.

9r7:31* COPY AVAILABLE



DISCUSSION

A positive and statistically significant correlation exists between typicality/logit
values produced via KBIT-derived pattern match (WC) and pattern discrimination
(BC) estimates, and, the performance of PGY1 residents-in-training.

It is important to recall that KBIT was designed to function in a mo.nner consistent
with an abstraction-based theory of how clinicians perform DDX. That is, similar to
KBIT, clinicians may actually employ a knowledge base comprised of disease class
concepts, which in turn is comprised of generalizations or abstractions derived form
knowledge of disease/sign-symptom conditional probabilities. Clinicians may also
employ an inferencing (decision making) mechanism similar to KBIT's pattern
matching (WC) and pattern discrimination (BC) in an effort to perform DDX.

Given as sound theoretical basis with which to assert that similar knowledge base
structures and inferencing mechanisms may be operative in practicing clinicians,
then the authors suggest that the use of typicality/logit values to draw inferences
regarding the robustness of a subject's disease class DDX concepts seems plausible.

The degree to which the simulated PAT mirrored the ranking of actual subject
performance on the paper-based examination enables the authors to draw the
following inferences. First, PAT appears to have a definite logistical advantage in
terms of testing time. Specifically, the CAT arrived at it's ranking of a given subject
utilizing three test items while the paper-based format required all eight test items
to arrive a final ranking. Second, Like the paper-based testing format, a PAT
containing disease class-specific, typicality/logit value based test items may provide
educators with an opportunity to feasibly assess the robustness of a subject's disease
class DDX concepts.

CONCLUSION

Classification theories have long demonstrated that performance is a function of an
instance's typicality. The utilization of abstraction-derived classification theories and
artificial intelligence tools to construct typicality/logit value based medical test case
vignettes enabled the authors to successfully anticipate the DDX performance of a
group of PGY1 subjects. The authors suggest that these theories, tools, and findings
give reason to believe that it may now be possible to draw inferences regarding the
robustness of the disease class concepts which clinician's utilize to perform DDX.

PAT formats utilizing test case items selected because of their typicality/logit values
appear to be a useful vehicle for deriving logistically feasible inferences regarding
the robustness of a clinician's disease class DDX concepts. Such inferences may prove
to be the basis for the development of efficient and effective medical instructional
and curricular reforms. Clearly, artificial intelligence tools, PAT formats and the
formalized applica tion of classification theories may prove to be the foundation for
new and more meaningful assessment procedures in medical education.

I I



TABLE 1. Positive signs and symptoms associated with each of eight selected MI cases.

CASENUMBER
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#1 #2 #3 #4 #5 #6 #7 #8

AGE CREAM MAN k51:1Y . ..

MALE

SUDDEN PAIN CNSET .

DURATION I .1 HOURS .

PAIN PRESENT NOW . 1

DULL/PRBSURE/SGUDIND
4

BURNING

SURSTERNAL/LEFT PRECCRDIAL .

POSTERIOR CHEST

RAD' ATICN TO NECK /JAW /ARM

RAIXATICN TO BACK

-§3195E141553117PA

SYNCOPE

PALPITATI CNS

Ilk
PAIN MODIFIED II IoNcArkw

PAIN MODIFIED BY RLST

PAN MODIFIED BY EXERTKIN

RECENT aalcalury

kal:41 PRIOR SUKC.EKY

WIII.P7T,S

Id kINCIII

TAO IYITTEA

TACINCARDIA

54 GALLOPS

IRECMDIAL PRICTIO4 RUB

NECK I/LIN DislIKIION

MILD I 11 PFRTINSION

DWI It*LSIS

t oOt /PAI f /Mt 4.I SkIN

(1ANO!IS



,P
ap

er
vs

 P
at

'
15

0

10
0 50

0

0
1

2
3

4

P
er

to
rr

ne
nc

 e
 L

 e
ve

l

5

1 7
8

1 
3

1 
4



APPENDIX

0. Request next candidate.
Set D=0, L=0, H=0, and R=O.

1. Find next item near difficulty (D).
2. Set D at the actual calibration of that item.
3. Administer that item.
4. Obtain a response.
5. Score that response.
6. Count the items taken. L L + 1
7. Add the difficulties used. H = H + D

If response not correct,
8. Reset item difficulty. D = D 2/L

If response is correct,
9. Count right answers R = R + 1
10. Reset item difficulty. D = D + 2/L

If not ready to decide to pass/fail,
11. Go to step 1.

If ready to decide pass/fail
12. Calculate wrong answers. W = L - R
13. Estimate measure. B = H/L + log(R/W)
14. Estimate Error. S = sqrt[LAR*W)]
15. Compare measure B with pass/fail standard T.
16. If (T - S) < B < (T + S), go to step 1.
17. If (B - S) > T, then pass.
18. If (B + S) < T, then fail.
19. If all candidates administered test- stop, else
20. Go to step 0.
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